

Journal of Alloys and Compounds 230 (1995) L10-L12

Letter

New ternary aluminides T₅M₂Al having W₅Si₃-type structure

Markus A. Pietzka, Julius C. Schuster

Institute of Physical Chemistry, University of Vienna, Wahringerstr. 42, Vienna A-1090, Austria

Received 21 July 1995

Abstract

Six new ternary aluminides having W_5Si_3 -type structure were found. These are: Zr_5Sn_2Al , Hf_5Sn_2Al , Ti_5Pb_2Al , Zr_5Pb_2Al , Hf_5Pb_2Al and Nb_5Sn_2Al .

Keywords: Ternary aluminides; W_sSi₃-type related crystal structure; Ti₅Sn₂Al; Zr₅Sn₂Al; Hf₅Sn₂Al; Ti₅Pb₂Al; Zr₅Pb₂Al; Hf₅Pb₂Al; Hf₅Pb₂Al; Nb₅Sn₂Al

1. Introduction

During the investigation of the phase equilibria in the system Ti-Al-Sn [1] a new ternary compound with the approximate composition Ti₅Sn₂Al [2] was observed. The powder X-ray diffraction pattern was indexed based on a body-centered tetragonal unit cell with a = 1.0549(2) nm and c = 0.5242(2) nm. The intensities of the diffraction peaks can be described satisfactorily by a W₅Si₃-type related crystal structure, space group *I4/mcm* (Table 1). In this study 20 alloys were prepared by variation of the transition metal T (=Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) and the main group element M (=Si, Ge, Sn, Pb) yielding six new W₅Si₃-type ternary compounds: Zr₅Sn₂Al, Hf₅Sn₂Al, Ti₅Pb₂Al, Zr₅Pb₂Al, Hf₅Pb₂Al and Nb₅Sn₂Al.

2. Experimental

Ternary alloys with the composition T:M:Al = 5:2:1 were prepared by compacting ($p \sim 30$ bar) appropriate powder mixtures (1 g) of Ti (purity: m2N), Zr (purity: m3N), Hf (purity: m2N6), Nb (purity: m2N8), Ta (purity: m3N), Cr (purity: m3N5), Mo (purity: 3N), W (purity: 3N), Al (purity: m2N8), Si (purity: m3N+), Sn (purity: m2N5) and Pb (purity: m2N5). V (purity: 99.83%, C: 0.054%, O: 0.014%, Fe: 0.017%, H: 0.0049%, N: 0.0028%), Y (purity: m3N) and Ge (purity: m6N+) were used as lumps. The pellets were placed in alumina crucibles and sealed in quartz tubes. Arc melting had to be avoided for the

Pb-containing samples due to high vaporization losses. Except for the alloys in the systems Ti–Si–Al, Ti–Ge– Al and T–Sn–Al the heat treatment involved two steps. First the temperature was raised to the approximate melting temperature of Pb and held there for 1 d. Thereafter all alloys were annealed at 900 °C for 10 d. The analysis of the water-quenched samples was performed by means of XRD (Guinier–Huber cameras, CuK α_1 radiation). The diffraction data were handled and evaluated by using the software package STRUKTUR [3]. It was not attempted to prepare singlephase specimens.

3. Results

The T_5M_2Al alloys prepared were: Ti_5Si_2Al , Ti₅Ge₂Al, Ti₅Pb₂Al, Zr₅Sn₂Al, Zr₅Pb₂Al, Hf₅Sn₂Al, $Hf_5Pb_2Al, V_5Sn_2Al, V_5Pb_2Al, Nb_5Sn_2Al, Nb_5Pb_2Al,$ $Ta_{5}Sn_{2}Al_{1}$ Ta_5Pb_2Al , Cr_5Sn_2Al , Cr_5Pb_2Al , $Mo_{s}Sn_{2}Al$ Mo_5Pb_2Al , W_5Sn_2Al , W_5Pb_2Al and Y_5Sn_2Al . The comparison of the XRD pattern intensities observed and calculated showed that in the systems Ti-Pb-Al, Zr-Sn-Al, Zr-Pb-Al, Hf-Sn-Al, Hf-Pb-Al and Nb-Sn-Al ternary compounds exist, which are isomorphous with W_5Si_3 and thus can be described analogously to Ti₅Sn₂Al with space group I4/mcm and 16 T(1) in position 16k, 4 T(2) in position 4b, 8 M in position 8h and 4 Al in position 4a (Table 1). Table 2 shows the lattice parameters of these new compounds and of Ti₅Sn₂Al [2].

Recently an isothermal section in the system Y-Al-

Table 1									
X-ray powder	diffractogram	of Ti ₅ Sn ₂ Al	[2] in allo	$y \operatorname{Ti}_{62} \operatorname{Sn}_{23} \operatorname{Al}_{15}$, (CuK α_1	radiation,	Ge standard,	Guinier	camera)

Н	K	L	$\sin^2 \Theta_{ m obs}$	$\sin^2 \Theta_{calc}$	Int. _{obs}	Int. _{calc}	Remarks
1	1	0	0.0107	0.0107	w	8	
2	0	0	0.0213	0.0213	w	6	
2	1	1	0.0483	0.0483	S	66	
0	0	2	0.0862	0.0862	m	28	
3	2	1	0.0909	0.0909	m	28	
3	3	0	0.0959	0.0959	m	30	
4	2	0	0.1066	0.1066	ms	24	coinc. Ti ₅ Sn ₃
2	0	2	0.1078	0.1077	m	27	
			0.1095		vw		TiAl
4	1	1	0.1123	0.1122	vs	100	
			0.1177		w		Ti ₅ Sn ₃
2	2	2	0.1290	0.1290	w	8	×
3	1	2	0.1398	0.1397	vw	7	
4	0	2	0.1720	0.1717	w	17	
5	2	1	0.1763	0.1762	w	21	
5	3	0	0.1815	0.1813	vw	5	
3	3	2	0.1827	0.1823	w	18	
6	0	0		0.1919		8	
			0.1925		vw		
4	2	2		0.1930		1	
2	1	3	0.2208	0.2210	vw	9	
7	1	0		0.2666		8	
			0.2670		w		
5	3	2		0.2676		9	
4	1	3	0.2851	0.2849	m	27	
6	2	2	0.2997	0.2996	vw	3	
7	2	1	0.3042	0.3041	vw	3	
7	3	0	0.3089	0.3092	vw	7	
0	0	4	0.3457	0.3456	vw	8	
5	2	3	0.3492	0.3489	vw	9	
7	1	2	0.3527	0.3529	n.d.	11	coinc. Ge
6	4	2	0.3635	0.3634	w	18	
8	1	1	0.3684	0.3683	w	19	
6	6	0	0.3841	0.3840	vw	4	
7	3	2	0.3955	0.3954	vw	15	

Reflections having a calculated intensity <5 are omitted. Crystallographic description: space group: I4/mcm; 16 Ti(1) in position 16k; 4 Ti(2) in position 4b; 8 Sn in position 8h; 4 Al in position 4a; a = 1.0549(2) nm. c = 0.5242(2) nm.

Table 2 The lattice parameters of Ti_5Sn_2Al , Ti_5Pb_2Al , Zr_5Sn_2Al , Zr_5Pb_2Al , Hf_5Sn_2Al , Hf_5Pb_2Al and Nb_5Sn_2Al

Compound	<i>a</i> (nm)	<i>c</i> (nm)	$V (nm^3)$	c/a	Reference	
Ti ₅ Sn ₂ Al	1.0549(2)	0.5242(2)	0.5833	0.497	[2]	
Ti,Pb,Al	1.0659(4)	0.5318(2)	0.6042	0.499	This study	
Zr ₅ Sn ₂ Al	1.1181(2)	0.5538(1)	0.6923	0.495	This study	
Zr ₅ Pb ₂ Al	1.1209(5)	0.5524(3)	0.6941	0.493	This study	
Hf ₅ Sn ₂ Al	1.1014(1)	0.5542(1)	0.6724	0.503	This study	
Hf,Pb,Al	1.1045(2)	0.5543(2)	0.6763	0.502	This study	
Nb ₅ Sn ₂ Al	1.0629(2)	0.5216(2)	0.5892	0.490	This study	

Sn was presented [4], in which a ternary compound of estimated stoichiometry $Y_8Sn_9Al_3$ had been observed. Since the indexing of the diffraction pattern was not yet done, one sample with the estimated composition was prepared assuming a structural relationship to the W_5Si_3 -type structures. However, the unknown diffraction pattern did not show any similarity to the structure type presented in this paper.

4. Discussion

As can be expected from the covalent radii of Ti,

Zr, Hf, Sn and Pb the volumes of the unit cell increase in the order $Ti_5M_2Al < Hf_5M_2Al < Zr_5M_2Al$ and are larger for the Pb-containing compounds. In the system Zr-Al there is binary Zr_5Al_3 of W_5Si_3 -type structure at temperatures above 950-1000 °C [5]. So it seems that Zr₅Al₃ can be stabilized towards lower temperatures by the addition of Sn and Pb, respectively. In the literature Nb₅Sn₂Ga [6] has been reported to have W₅Si₃-type structure, which might form a continuous series of solid solutions with binary Nb₅Ga₃ (W₅Si₃type) by substituting large amounts of Ga with Sn. The same is likely to be true for Ta_5Ga_2Sn [7] found to be isomorphous with W₅Si₃. In this case the ratio Ga:Sn is 2:1 and not, as for the others, 1:2. The authors state that successive substitution of Ga by Sn atoms between Ta_5Ga_3 and Ta_5Ga_2Sn is likely to occur.

References

- [1] M. Pietzka, U. Gruber and J.C. Schuster, Investigation of phase equilibria in the ternary Ti-Al-Sn, paper presented at EUROMAT '93, Paris.
- [2] J.C. Schuster and M.A. Pietzka, A new ternary phase having W_sSi₃-type structure, paper presented at Hauptversammlung DGM, Friedrichshafen, 1993.
- [3] W. Wacha, Thesis, Vienna Institute of Technology, 1989.
- [4] R. Chen, X. Wei and J. Liu, J. Alloys Comp., 218 (1995) 221-223.
- [5] T.B. Massalski (ed.), Binary Alloy Phase Diagrams, Am. Soc. Mater., Materials Park, OH, 2nd edn., 1990.
- [6] K. Ukei, T. Shishido and T. Fukuda, Acta. Cryst., C45 (1989) 349-350.
- [7] J. Ye, H. Horiuchi, T. Shishido, K. Ukei and T. Fukuda, Acta. Cryst., C46 (1989) 1193–1195.